Machine learning models
The qim3d
library aims to ease the creation of ML models for volumetric images.
qim3d.ml.models
qim3d.ml.models.UNet
Bases: Module
3D UNet model designed for imaging segmentation tasks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
size |
str
|
Size of the UNet model. Must be one of 'small', 'medium', or 'large'. Default is 'medium'. |
'medium'
|
dropout |
float
|
Dropout rate between 0 and 1. Default is 0. |
0
|
kernel_size |
int
|
Convolution kernel size. Default is 3. |
3
|
up_kernel_size |
int
|
Up-convolution kernel size. Default is 3. |
3
|
activation |
str
|
Activation function. Default is 'PReLU'. |
'PReLU'
|
bias |
bool
|
Whether to include bias in convolutions. Default is True. |
True
|
adn_order |
str
|
ADN (Activation, Dropout, Normalization) ordering. Default is 'NDA'. |
'NDA'
|
Returns:
Name | Type | Description |
---|---|---|
model |
Module
|
3D UNet model. |
Raises:
Type | Description |
---|---|
ValueError
|
If |
Source code in qim3d/ml/models/_unet.py
qim3d.ml
qim3d.ml.Augmentation
Class for defining image augmentation transformations using the MONAI library.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
resize |
str
|
Specifies how the images should be reshaped to the appropriate size, either 'crop', 'resize', or 'padding'. Defaults to 'crop'. |
'crop'
|
trainsform_train |
str
|
Level of transformation for the training set, either 'light', 'moderate', 'heavy' or None. Defaults to 'moderate'. |
required |
transform_validation |
str
|
Level of transformation for the validation set, either 'light', 'moderate', 'heavy' or None. Defaults to None. |
None
|
transform_test |
str
|
Level of transformation for the test set, either 'light', 'moderate', 'heavy' or None. Defaults to None. |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
If |
Example
Source code in qim3d/ml/_augmentations.py
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
|
qim3d.ml.Augmentation.augment
Creates an augmentation pipeline based on the specified level.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
img_shape |
tuple
|
Dimensions of the volume as (D, W, H). |
required |
level |
str
|
Level of augmentation, either 'light', 'moderate', 'heavy' or None. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
Compose |
Compose
|
Compose object with the specified augmentations. |
Raises:
Type | Description |
---|---|
ValueError
|
If |
ValueError
|
If |
Source code in qim3d/ml/_augmentations.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
|
qim3d.ml.Hyperparameters
Hyperparameters for training the 3D UNet model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Module
|
PyTorch model. |
required |
n_epochs |
int
|
Number of training epochs. Default is 10. |
10
|
learning_rate |
float
|
Learning rate for the optimizer. Default is 1e-3. |
0.001
|
optimizer |
str
|
Optimizer algorithm. Must be one of 'Adam', 'SGD', 'RMSprop'. Default is 'Adam'. |
'Adam'
|
momentum |
float
|
Momentum value for SGD and RMSprop optimizers. Default is 0. |
0
|
weight_decay |
float
|
Weight decay (L2 penalty) for the optimizer. Default is 0. |
0
|
loss_function |
str
|
Loss function criterion. Must be one of 'BCE', 'Dice', 'Focal', 'DiceCE'. Default is 'BCE'. |
'Focal'
|
Returns:
Name | Type | Description |
---|---|---|
hyperparameters |
dict
|
Dictionary of hyperparameters. |
Raises:
Type | Description |
---|---|
ValueError
|
If |
ValueError
|
If |
Example
import qim3d
# Set up the model and hyperparameters
model = qim3d.ml.UNet(size = 'small')
hyperparameters = qim3d.ml.Hyperparameters(
model = model,
n_epochs = 10,
learning_rate = 5e-3,
loss_function = 'DiceCE',
weight_decay = 1e-3
)
# Retrieve the hyperparameters
parameters_dict = hyperparameters()
optimizer = params_dict['optimizer']
criterion = params_dict['criterion']
n_epochs = params_dict['n_epochs']
Source code in qim3d/ml/models/_unet.py
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
|
qim3d.ml.prepare_datasets
Splits and augments the train/validation/test datasets.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path |
str
|
Path to the dataset. |
required |
val_fraction |
float
|
Fraction of the data for the validation set. |
required |
model |
Module
|
PyTorch Model. |
required |
augmentation |
Compose
|
Augmentation class for the dataset with predefined augmentation levels. |
required |
Returns:
Name | Type | Description |
---|---|---|
train_set |
Subset
|
Training dataset. |
val_set |
Subset
|
Validation dataset. |
test_set |
Subset
|
Testing dataset. |
Raises:
Type | Description |
---|---|
ValueError
|
If the validation fraction is not a float, and is not between 0 and 1. |
Example
import qim3d
base_path = "C:/dataset/"
model = qim3d.ml.models.UNet(size = 'small')
augmentation = qim3d.ml.Augmentation(resize = 'crop', transform_train = 'light')
# Set up datasets
train_set, val_set, test_set = qim3d.ml.prepare_datasets(
path = base_path,
val_fraction = 0.5,
model = model,
augmentation = augmentation
)
Source code in qim3d/ml/_data.py
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
|
qim3d.ml.prepare_dataloaders
prepare_dataloaders(train_set, val_set, test_set, batch_size, shuffle_train=True, num_workers=8, pin_memory=False)
Prepares the dataloaders for model training.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
train_set |
data
|
Training dataset. |
required |
val_set |
data
|
Validation dataset. |
required |
test_set |
data
|
Testing dataset. |
required |
batch_size |
int
|
Size of the batches that should be trained upon. |
required |
shuffle_train |
bool
|
Optional input to shuffle the training data (training robustness). |
True
|
num_workers |
int
|
Defines how many processes should be run in parallel. Default is 8. |
8
|
pin_memory |
bool
|
Loads the datasets as CUDA tensors. Default is False. |
False
|
Returns:
Name | Type | Description |
---|---|---|
train_loader |
DataLoader
|
Training dataloader. |
val_loader |
DataLoader
|
Validation dataloader. |
test_loader |
DataLoader
|
Testing dataloader. |
Example
import qim3d
base_path = "C:/dataset/"
model = qim3d.ml.models.UNet(size = 'small')
augmentation = qim3d.ml.Augmentation(resize = 'crop', transform_train = 'light')
# Set up datasets
train_set, val_set, test_set = qim3d.ml.prepare_datasets(
path = base_path,
val_fraction = 0.5,
model = model,
augmentation = augmentation
)
# Set up dataloaders
train_loader, val_loader, test_loader = qim3d.ml.prepare_dataloaders(
train_set = train_set,
val_set = val_set,
test_set = test_set,
batch_size = 1,
)
Source code in qim3d/ml/_data.py
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
|
qim3d.ml.model_summary
Prints the summary of a PyTorch model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Module
|
The PyTorch model to summarize. |
required |
dataloader |
DataLoader
|
The data loader used to determine the input shape. |
required |
Returns:
Name | Type | Description |
---|---|---|
summary |
str
|
Summary of the model architecture. |
Example
import qim3d
base_path = "C:/dataset/"
model = qim3d.ml.models.UNet(size = 'small')
augmentation = qim3d.ml.Augmentation(resize = 'crop', transform_train = 'light')
# Set up datasets and dataloaders
train_set, val_set, test_set = qim3d.ml.prepare_datasets(
path = base_path,
val_fraction = 0.5,
model = model,
augmentation = augmentation
)
train_loader, val_loader, test_loader = qim3d.ml.prepare_dataloaders(
train_set = train_set,
val_set = val_set,
test_set = test_set,
batch_size = 1,
)
# Get model summary
summary = qim3d.ml.model_summary(model, train_loader)
print(summary)
Source code in qim3d/ml/_ml_utils.py
qim3d.ml.train_model
train_model(model, hyperparameters, train_loader, val_loader, checkpoint_directory=None, eval_every=1, print_every=1, plot=True, return_loss=False)
Trains the specified model.
The function trains the model using the data from the training and validation data loaders, according to the specified hyperparameters. Optionally, the final checkpoint of the trained model is saved as a .pth file, the loss curves are plotted, and the loss values are returned.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Module
|
PyTorch model. |
required |
hyperparameters |
class
|
Dictionary with n_epochs, optimizer and criterion. |
required |
train_loader |
DataLoader
|
DataLoader for the training data. |
required |
val_loader |
DataLoader
|
DataLoader for the validation data. |
required |
checkpoint_directory |
str
|
Directory to save model checkpoint. Default is None. |
None
|
eval_every |
int
|
Frequency of model evaluation. Default is every epoch. |
1
|
print_every |
int
|
Frequency of log for model performance. Default is every 5 epochs. |
1
|
plot |
bool
|
If True, plots the training and validation loss after the model is done training. Default is True. |
True
|
return_loss |
bool
|
If True, returns a dictionary with the history of the train and validation losses. Default is False. |
False
|
Returns:
Name | Type | Description |
---|---|---|
train_loss |
dict
|
Dictionary with average losses and batch losses for training loop. Only returned when |
val_loss |
dict
|
Dictionary with average losses and batch losses for validation loop. Only returned when |
Example
import qim3d
base_path = "C:/dataset/"
model = qim3d.ml.models.UNet(size = 'small')
augmentation = qim3d.ml.Augmentation(resize = 'crop', transform_train = 'light')
hyperparameters = qim3d.ml.Hyperparameters(model, n_epochs = 10)
# Set up datasets and dataloaders
train_set, val_set, test_set = qim3d.ml.prepare_datasets(
path = base_path,
val_fraction = 0.5,
model = model,
augmentation = augmentation
)
train_loader, val_loader, test_loader = qim3d.ml.prepare_dataloaders(
train_set = train_set,
val_set = val_set,
test_set = test_set,
batch_size = 1,
)
# Train model
qim3d.ml.train_model(
model = model,
hyperparameters = hyperparameters,
train_loader = train_loader,
val_loader = val_loader,
checkpoint_directory = base_path,
plot = True)
Source code in qim3d/ml/_ml_utils.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
|
qim3d.ml.load_checkpoint
Loads a trained model checkpoint from a .pth file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Module
|
The PyTorch model to load the checkpoint into. |
required |
checkpoint_path |
str
|
The path to the model checkpoint .pth file. |
required |
Returns:
Name | Type | Description |
---|---|---|
model |
Module
|
The model with the loaded checkpoint. |
Example
Source code in qim3d/ml/_ml_utils.py
qim3d.ml.test_model
Performs inference on input data using the specified model.
The input data should be in the form of a list, where each item is a tuple containing the input image tensor and the corresponding target label tensor. The function checks the format and validity of the input data, ensures the model is in evaluation mode, and generates predictions using the model. The input images, target labels, and predicted labels are returned as a tuple.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Module
|
The trained model used for predicting segmentations. |
required |
test_set |
Dataset
|
A test dataset containing input images and ground truth label data. |
required |
threshold |
float
|
The threshold value used to binarize the model predictions. |
0.5
|
Returns:
Name | Type | Description |
---|---|---|
results |
list
|
List of tuples (volume, target, pred) containing the input images, target labels, and predicted labels. |
Raises:
Type | Description |
---|---|
ValueError
|
If the data items do not consist of tensors. |
Notes
- The function assumes that the model is not already in evaluation mode (
model.eval()
).
Example
import qim3d
base_path = "C:/dataset/"
model = qim3d.ml.models.UNet(size = 'small')
augmentation = qim3d.ml.Augmentation(resize = 'crop', transform_train = 'light')
hyperparameters = qim3d.ml.Hyperparameters(model, n_epochs = 10)
# Set up datasets and dataloaders
train_set, val_set, test_set = qim3d.ml.prepare_datasets(
path = base_path,
val_fraction = 0.5,
model = model,
augmentation = augmentation
)
train_loader, val_loader, test_loader = qim3d.ml.prepare_dataloaders(
train_set = train_set,
val_set = val_set,
test_set = test_set,
batch_size = 1,
)
# Train model
qim3d.ml.train_model(
model = model,
hyperparameters = hyperparameters,
train_loader = train_loader,
val_loader = val_loader,
plot = True)
# Test model
results = qim3d.ml.test_model(
model = model,
test_set = test_set
)
# Get the result of the first test image
volume, target, pred = results[0]
qim3d.viz.slices_grid(pred, num_slices = 5)
Source code in qim3d/ml/_ml_utils.py
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
|