Machine learning models
The qim3d
library aims to ease the creation of ML models for volumetric images
qim3d.ml.models
qim3d.ml.models.UNet
Bases: Module
2D UNet model for QIM imaging.
This class represents a 2D UNet model designed for imaging segmentation tasks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
size |
small or medium or large
|
Size of the UNet model. Must be one of 'small', 'medium', or 'large'. Defaults to 'medium'. |
'medium'
|
dropout |
float
|
Dropout rate between 0 and 1. Defaults to 0. |
0
|
kernel_size |
int
|
Convolution kernel size. Defaults to 3. |
3
|
up_kernel_size |
int
|
Up-convolution kernel size. Defaults to 3. |
3
|
activation |
str
|
Activation function. Defaults to 'PReLU'. |
'PReLU'
|
bias |
bool
|
Whether to include bias in convolutions. Defaults to True. |
True
|
adn_order |
str
|
ADN (Activation, Dropout, Normalization) ordering. Defaults to 'NDA'. |
'NDA'
|
Raises:
Type | Description |
---|---|
ValueError
|
If |